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Abstract. Recently, the author has proposed a methodology for the de-
sign of nonlinear observers based on the dissipative theory. This method-
ology offers a systematic approach to the observer design providing great
flexibility and generality. For example, several well known observer de-
sign methods, as the High-Gain and the Lipschitz Observers, can be
treated and generalized in a unified manner by the Dissipative Approach.
Moreover, different objectives in observation can be also unified and gen-
eralized by the Dissipative Approach. as for example the design of Un-
known Input and Robust Observers. The objective of this paper is to
show how this methodology can be applied in the design of observers for
bioprocesses and its advantages for this kind of processes. An example
illustrates the main ideas.

1 Introduction

Reaction systems is a class of nonlinear dynamical systems that is widely used
in areas such as chemical, biochemical and biomedical engineering, biotech-
nology, ecology, etc. (Robust) observation issues for this class of systems is of
fundamental importance due to the limited availability of on-line sensors and the
uncertainties related, in particular, to the mathematical model. It is not surpris-
ing that there is an intensive research activity to design observers (or software
sensors) for these systems ([1-3]), and different methods for uncertain reaction
systems, besides the classical extended Kalman and Luenberger observers, have
been proposed (for an overview see [2]): Interval Observers ([4]) are based on co-
operative systems theory; Adaptive Observers ([3]) assume that the uncertainties
are represented by unknown parameters; Asymptotic Observers ([1,2]) are based
on the mass and energy balances without requiring the process kinetics; Practi-
cal and Parallelotopic Observers ([5]) consider uncertainties as unknown inputs
(UI) and converge practically (not exactly) to the true state for a restricted class
of systems with bounded perturbations.

For reaction systems without uncertainties several methods have been applied
to design observers, as the High-Gain method ([6]) and the Lipschitz Method
([7))- For uncertain reaction systems, when there are only parametric uncertain-
ties, adaptive observers can be used. However, if stronger structural uncertain-
ties are available the most successful method used to day are the asymptotic
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observers ([1,2]). In the work ([8]) uncertainties are reprgsented by arbitrary un-
known input signals to the system, what represents a flexible way to cha.rac}:enze
many kinds of uncertainties, and they are able to show that the asymptotic ob-
servers can be recovered and extended with their approach. A highly satisfactory
result is to be able to explain, using observability/ det.ectabihty arguments‘, why
(classic) asymptotic observers converge and why thf‘!ll‘ convergence rate is n()t
assignable. Moreover, the robust observers proposed in that work can be use‘d in
more general situations and their convergence prop_ertles are completely derived
from the robust observability/detectability properties of the model.

However, due to the basic linear structure of the un(;ertai.n systems considerefi
in ([8]), it is not possible to consider more general situations. For examp']e, if
some reaction rates are known but others are uncertain, t}ns leads to a nonlinear
structure with unknown inputs, that cannot be trgated with that approach. Soa
natural extension of that work is to use u.nknown input ot?seryer desgn methods
for uncertain reaction systems, and this is part of the objective of this paper.

The use of systems with unknown inputs for the representation of tlfe‘ uncer-
tain reaction system’s family leads naturally to the study of obse.rvablhty &I-ld
detectability concepts for this kind of systems, and the cor.xstruct.lon &}nd exis-
tence conditions of Unknown Input Observers ( U]O). For linear time mvarla{lt
(LTI) systems this is a very well established topic ([9]),'and some advances in
the design of UIOs for nonlinear systems have been obtained recently ([10, 11])

Recently, the author has proposed ([12,13]) a method to des.ign fwf;linear
observers using dissipative methods. One attractive feature of this Dissipative
Design is, on the one side, that it includes and generalizes many current obser\‘rer
design methods, and on the other side, that it is possible to design observers with
unknown inputs or known inputs in a unified framework. The aim of this work
is to show how the Dissipative Design Method can be used to design observers
for reaction systems with or without uncertainties in & unified way. This can be
seen as a first step in a more general, and far-reaching objective: to develop a
methodology to design robust observers for uncertain reaction systems, in which
different kinds of uncertainties are available as unknown constant parameters,
unknown (bounded) disturbances, unmodeled dynamics, deterministic pertur-
bations characterized by an internal model, etc. We believe that the Dissipative
Design Method is able to reach these requirements, and this is part of active

research work.

2 Dissipative observer design

Motivated by the circle criterion design of nonlinear observers in [14] the author
has proposed in [12,13] a methodology for designing nonlinear observers for a
class of nonlinear systems. This method will be briefly reviewed in this section.
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2.1 Preliminaries

From the dissipativity theory ([15]) the following results are of relevance here.
Consider the feedback interconnection

j:Ax+Bu,y=Cz.u=—1/’(t1y), (1)

with z € R®, u € RY, y € R™, and quadratic supply rates w(v,w) = vTQv +
20TSw + wT Rw, where v € R", w € R*, Q € R™*", S € R™%*, R € R**s,
and Q, R symmetric. The linear part (A, B, C) of system (1) is said to be state
strictly dissipative (SSD) with respect to the supply rate w(y,u), or for short
(Q, S, R)-SSD, if there exist a matrix P = PT > 0, and ¢ > 0 such that

PA+ATP+¢P ,PB] _ [CTQCCTS
BTP o] |st¢c r SO )

For quadratic systems, i.e. m = g, passivity corresponds to the supply rate
w (y,u) = yTu. Note that this definition assures the existence of a quadratic
positive definite storage function V (z) = T Pz such that along any trajectory
of the system V (z (t)) < w (¥ (t) ,u(t)) — €V (z (t)).

The nonlinear part of system (1), a time-varying memoryless nonlinearity
¥ :[0,00)xR™ — R%, u =9 (t,y), piecewise continuous in t and locally Lipschitz
in y, such that ¥ (£,0) = 0, is said to satisfy a dissipative condition in I" with
respect to the supply rate w (u,y), or for short (@, S, R)-D in I', if w(u,y) =
w(®(ty),y) =20,Vt >0, Vy € I' CR™, where I' is a subset of R™ whose
interior is connected and contains the origin. If I' = R™, then 9 satisfies the
dissipativity condition globally, in which case it is said that 3 is dissipative with
respect to w, or for short, (@, S, R)-D.

Note that the classical sector conditions ([16]) for square nonlinearities, i.e.
m = g, can be represented in this form. If 4 is in the sector K}, K>, i..
(y - K1u)T (Kou—y) 20, then it is (Q, S, R)-D, with
(Q,S,R) = (-1, (K1 + K2),— (KT K2 + KT K1)). If ¢ is in the sector K1, o],
ie (y— Kiu)T w20, then it is (0,17, -1 (K, + KT))-D.

For the interconnected system (1) a generalization of the passivity and of the
small gain theorems for non square systems can be easily obtained, and it will
be used in the sequel.

Lemma 1. Consider the system (1). If the linear system (C, A, B) is (—R, ST, -Q)-
SSD, then the equilibrium point £ = 0 of (1) is globally (locally) ezponentially
stable for every (Q, S, R)-D (in I' for some I' C R™ ) nonlinearity.

2.2 Dissipative design for certain nonlinear systems

Consider the class of systems described by a LTI subsystem with a nonlinear
perturbation term, connected in feedback, i.e.

22{2'?=A1'+G1/’(¢7,y,u)+’7(t:y,u) yy=Cz ,0=Hz, (3)



120 Jaime A. Moreno

or that can be brought to this form by transformations, and where z € R" is
the state, y € RP is the measured output, u € R™ is the input, and 0 € R" is a
(not necessarily measured) linear function of the state. v (¢,y,u) is an arbitrary
nonlinear function of the input and the output. ¥ (o,y,u) is a g-dimensional
vector that depends on a,y,u. ¥ and < are assumed to be locally Lipschitz in
o, ¥, u, so that existence and uniqueness of solutions is guaranteed. It will be
assumed that the trajectories of interest of X' are defined for all future times.

An observer for system (3) is a dynamical system 2 that has as inputs the
input u and the output y of X, and its output & is an estimation of the state =
of . A full order observer for ' of the form

- {é=Ai+G¢(&+N(ﬁ—y),y,u)+L(é—y)+'Y(t,y.u), @)
§=Cs,6=Hi,

is proposed, where matrices L € R™*?, and N € R™*P have to be designed.
Defining the state estimation error by £ ¢ — z, the output estimation error by
§ £ 9 — y, and the function estimation error by & 245-0,2z& (H+NC)Z =
& + N, and a new nonlinearityd (z,0,%,u) £ % (0,y,u) — ¥ (¢ + 2,3,u), the
dynamics of the error can be written as

5:{é=AL£+GV) 5(0)=50,Z=H~i’,l/=—¢(z,0’,y,u) ’ (5)

where AL 2 A+ LC, and Hy £ H+ NC. ¢(0,0;y,u) =0 for all 0,9, u.

The observer design consists in finding matrices L and N, if they exist, so
that = satisfies the conditions of Lemma 1. For this it is necessary to assume
that the nonlinear part of (5) belongs to one or several sectors.

Assumption 1 ¢ in (5) is (Q:, Si, R:)-dissipative (in I') for some finite set of
non positive semidefinite quadratic forms w; (¢, z) = ¢TQip+2¢7Siz+2TRiz >
0, for all 0,y,u, fori=1,2,--- ,M.

It is clear that it is necessary that the quadratic forms be independent. It is
also easy to see that then ¢ is Zi_'_{l 0; (Q;, S:, R;)-dissipative (in I') for every §; >
0, i.e. ¢ is dissipative with respect to the supply rate w (¢, z) = Efil Oiw; (b, z).
In this case the design is as follows

Theorem 2. Suppose that Assumption 1 is satisfied. If there are matrices L
and N, and a vector 8 = (61,-+- ,0n), 0; = 0, such that the linear subsystem
of Z is (—Re, ST, —Qe)-5SD, with (Qe,Se, Re) = 1%, 8:(Qi, Si, Ri), that is

there ezist a matrizc P = PT > 0, and € > 0 such that

PAL+A[P+eP+H{RHy , PG- H{S]| _
GTp - SeHn Qo =%a (6)

where A = A+ LC, Hy = H + NC. Then 2 is a global (local) exponential
ofzgerper foz‘ L, i.e. there exist constants k,pu > 0 such that for all £ (0) (in a
vicinity of £ =0) || (t)|| < k(|2 (0)]| exp (—ut).
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The proposed method generalizes and improves several methods previously
proposed in the literature ([12]): (i) The Circle criterion design ({14]): our design
is valid for non-square systemns, the nonlinearities are of general type, and can
be described by several sector conditions. (ii) Lipschitz observer design [7], and
(iii) High-Gain observer design [6].

2.3 Dissipative design for uncertain nonlinear systems

One alternative to model uncertain systems consists in considering the uncer-
tainties as completely unknown inputs to the system. The class of nonlinear
systems considered for UIO design is

21{5?=A$+G‘¢'(U,y'u)+“/(t,y,u)+3wle=C$,0=HI, (7)

where w € RY is an arbitrary (even unbounded) unknown input. w can model
an arbitrary unknown disturbance acting on the system, parametric uncertainty
or unmodeled dynamics. It will be assumed that the trajectories of £ exist and
are well defined for all times, i.e. there are no finite escape times. Without loss
of generality it is assumed that matrices B and C are of full rank.The objective
is to design an Unknown Input Observer (UIO) for system X (7), that is, a
dynamical system that using the information of the known input u (t) and the
output y (t) produces an state estimate Z (t), that converges asymptotically to
the actual state = () of X, i.e. tllrgo (Z () —z(t)) = 0, in spite of the lack of
information on the unknown input w and derivative(s) of output y.

The main result of [17,10] is a sufficient condition for the existence of an
UIO for the plant X' (7).

Theorem 3. Suppose that Assumption 1 is satisfied, and that there ezist con-
stant matrices P= PT >0, L, N, S, a vector 8 = (61,---,0x), 0: >0, and a
constant € > 0, such that (% represent the symmetric terms)

PAL+ ATP+eP+ HLRsHN % %
GTP—SQHN Qs K| <O0.
BTpP-SC 00
Then there ezists an UIO for (7).

As it is shown in the references if this conditions are satisfied there are state
x = Tz and output transformations such that in the new coordinates the system
has the form

%1 = Auxi + Aizxe + G19 (0,y,u) + 71 - BTPBuw (8)
x2 = Aa1x1 + Azoxz + G2y (0,9, 4) + To (9)
n=x1, y2=Cexz2, 0 = Haxz .

Note that the states affected by the unknown input (x1) (8) are measured, and

the estimation of the rest of the states (9), that are unaffected by the unknown
input (x2), can be performed as in the previous subsection.
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Remark 1. In general (6, 3) are nonlinear matrix inequality feasibility problems.
Under some conditions they become Linear Matrix Inequalities (LMI) feasibility
problems, for which solutions can be effectively found by several algorithms in
the literature ([18]). Note also that when (6, 3) are feasible, there exist in general
several solutions for L and N. Replacing eP by el, (3) isa LMl in P, PL, ¢, S,
6 but not in N, except when Ry = 0 and Sp = 0. One possibility to solve (6, 3)
by LMI algorithms is to fix /V at some value and to search for a solution. This
can be made recursively until a solution is found. A particular situation arises
when N = 0, so that the classical output injection is made.

3 Model of (Uncertain) Reaction Systems and robust
observer design

A general state-space model of reaction systems is generally obtained from mass
and energy balances ([1,2]) and can be written in a compact and generalized

form as:
Sr:{t=Kp(x)-D({t)z-Q(z)+F(t) ,y=Cxz. (10)

where y € R™ is the output vector, the state z € R™ consists of component con-
centrations, volumes and temperatures, K € R™"*49 is the constant stoichiometric
coefficient matrix, ¢ € R9 is the reaction rate vector, D is the (matrix) dilution
rate, Q is the outflow rate vector, F is the feedrate vector. For a single reactor
D is a scalar but it is a matrix when several reactors are considered.

In practice the model is usually uncertain, since the parameters and non-
linearities of the system are difficult to identify precisely and they may change
over time. In particular, the reaction rates are usually poorly known. This makes
the observation problem challenging. In order to deal with these uncertainties
a representation of all possible behaviors of the system (10) is required. In a
previous work ([8]) the authors have proposed to use state-affine systems with

unknown inputs, that is
Z'U:{:i:=A(u,y):z+Bw+¢(u,y) yy=Crz, (11)

where w € RP is a vector of (arbitrary) unknown inputs representing uncertain-
ties, u € R" is a vector of measured inputs, and A (u,y) is a continuous ma-
trix. In this form they have been able to explain and generalize the well known
asymptotic observers, that have been shown to be very useful in many practical
situations ([1,19,2]). They are obtained when all the reaction rates are consid-
ered uncertain, w = ¢ (z), but the rest of the model is assumed to be known, i.e.
the uncertain system can be represented by (11) with A (u,y) = —D (t), B=K,
Y (u,y)=F(t)-Q(z).

However, due to the basic linear structure of (11) it is not possible to con-
sider more general situations. For example, if some reaction rates are known
but others are uncertain, this leads to a nonlinear structure as the one in (7,
when the uncertain reaction rates are modeled as unknown inputs. It seems also
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natural to use (7) as a model for an uncertain reaction system. The dissipative
method can then be used to design a robust observer. It is clear that the classic
asymptotic observers are a special case of this approach. Moreover, the case that
no uncertainties are present in the model can be treated in the same framnework.
This shows the great flexibility of the method.

Ezample 1. Consider the case that in system (10) some reaction rates (px (z))
are well known but the rest is unknown (i, (z)). If it is assumed that Q, D and
F are measured, and K is known, then the reaction system can be written as

t=Krpr(z)— D)z -Q(z)+ K,w+ F(t) ,y=Cxz.

in which w = ¢, (z). This system has the structure of (7).

4 Example

In order to illustrate the dissipative observer design method proposed a simple
biological reactor model will be considered:

X=-D)X+p(S)X,S=D(t)(Sin—-S)-3n(S)X, (12)

where X is the biomass and S the substrate concentration, p is the growth rate,
Y the yield coefficient, S;, is the substrate concentration in the inflow and D is
the dilution rate. The observation problem consists in estimating the substrate
concentration S when the biomass concentration X is measured. Two extreme
conditions on the knowledge of the reaction rate will be considered:

Case 1: The reaction rate u is completely unknown.

Case 2: No uncertainty, i.e. the model is perfectly known.

4.1 Case 1: Unknown reaction rate

Case 1 is the standard situation for asymptotic observers, where p is treated
as an unknown input ([1,2,8]). Since there is only one reaction rate and one
measurement in this example, the dissipative approach leads exactly to the
classical asymptotic observer. The variable Z = & X + S, whose dynamics
isZ = =D (t) Z+ D (t) Sin, is independent of the reaction rate u. The asymptotic
observer

%=-D(t)2+D(t)Sm,

converges asymptotically to the true value of Z, independently of the value of
i, when D is persistently exciting, i.e. there exist &, T > 0 such that for all
t>0, ftHT D(7)dr 2> a. The convergence of the observer cannot be assigned
and depends on the behavior of D. The detectability analysis of 8] shows that
if p is completely arbitrary no better result can be obtained.
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4.2 Case 2: Known reaction rate

Consider the following observer

);“r=—D(t)x+u(s§'+1\r()‘r-x))x-:-z1 (% -x),

) (13)
$=D®) (Sn-9)-3n(s+N(X-X)) X+l (X-X).
The dynamics of the observation errors ex = X—-—X,es=S5—-5 are
éx =hex +¢(z,5) X ,és=—D(t)es — +¢(z,5) X + hex , (14)

z=es+ Nex , ¢(2,5)=p(z+S5)—u(S) .

It is illustrative to use (ex,z) as state variables of the error, instead of
(ex,es), i.e.

éx =lhex+¢(2,9X, (15)
z2=-D(t)z+ (N—- -)17)¢(Z,S)X+INCX JAN=NlL + 1.

In order to design the observer the sector of ¢ has to be determined. For
continuous differentiable reaction rates u this is easily done with the help of the
mean value theorem. Since ¢ (z,S5) = Mﬁ—;"’ﬂz for some ¢ € (0,1) it follows
that ¢ (z,S) is in the sector [K;, K2], where K, and K are the minimum and
the maximum value of the derivative of u, respectively.

Two classical classes of growth rates will be considered: The monotonic
case: The typical form is the Monod function u (S) = 3%9—,%, but other forms
are possible. In this case 0 < K; < K3 < oo. The strict positiveness of K; comes
from the fact that in the reactor S is bounded.

The non monotonic case: The typical form is the Haldane function u (S) =
—517,—(%?, but other forms are possible. In this case K} < 0 < K2 < oco.

It is possible to design the observer gains by solving the Matrix Inequality
(6), that, in general, has many solutions, if it is feasible. Here, for illustrative
purposes, a simple storage function will be selected and the design parameters
will be selected to satisfy the corresponding inequality.

Consider as Lyapunov’s function candidate V (ex,z) = 1 (e% +62z2). Its
derivative along the trajectories of the observation error 15 is

V:lleg( +X¢(2,S)ex +0lnzex — 6D (t) 22 +6X (N— %,-)(ﬁ(z,S)z .

The design is then as follows:

The monotonic case: Selecting [; = A, X, 0 > 0, Iy = AyX and N < {,
with A; large enough, then V < —€V so that the observer converges exponen-
tially fast, even when D = 0.

The non monotonic case: Selecting I} = A1 X, 8 > 0, Iy = AnX and

= %, with A; large enough, then V is negative definite, so that the observer
converges asymptotically fast, if it is assumed that D (t) > € > 0.
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Many more solutions can be found solving the Matrix Inequality (6). These
degrees of freedom can be used to optimize certain performance criteria. Note
that setting N = 3 and !y = 0 in the previous observer, then the asymptotic
observer is recovered!

In Figure 1 some simulations illustrate the behavior of the designed observers.
The growth rate is Monod and the parameters of the plant: Y = 0.3, Sin = 10,
o = 0.2, Ks =10, D = 0.4, Xo = 10, Sp = 5. For both observers § = 0.025,
Iy = —3X,exo = 0.5, eso = 10 were used. For the asymptotic observer N = 1/Y
and Iy = 0, and for the dissipative observer N = 1/Y — 8, Iy = -X/6.

Fig. 1. Simulation of the bioreactor and the estimation errors of the asymptotic ob-
server (continuous line) and of the dissipative observer (dotted line).

It is clear that the convergence velocity of the error of the unmeasured state
(S) for the dissipative observer is much faster than that of the asymptotic ob-
server. This is of course expected, since the model is perfectly known for the
first but not for the second one. The interesting point here is that the dissipa-
tive observer methodology allows for a unified design under different uncertainty

conditions.

5 Conclusions

In this work it has been shown how the Dissipative Design Method can be used
to design observers for reaction systems with or without uncertainties in a uni-
fied way. Many important issues as the consideration of unknown parameters,
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sensor noise, consideration of trade offs between robustness and observer perfor-
mance, etc. have to be addressed and this is part of active research work. We
believe that the Dissipative Design Method is a methodology able to reach these

requirements.
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